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TOXIC TORTS AND CAUSATION: TOWARDS AN
EQUITABLE SOLUTION IN AUSTRALIAN LAW

PART II: MEANS-ENDS ANALYSIS'

PAOLO F RICCI' AND NATALIE J GRAY"

I. INTRODUCTION

In toxic tort and environmental law, scientific evidence bears on causation
through emission-exposure and dose-response models. The latter consists of
clinical studies, animal in vivo studies, epidemiological studies, and tests on
lower organisms. Scientific and legal causation merge in an uncertain network
of feedbacks: variable inputs and outputs surrounded by different degrees of
knowledge. It is doubtful that a trier of fact could adequately decide between
conflicting forms of evidence on ‘common sense’ and ‘ordinary experience’.
However, otherwise meritorious claims cannot fail because the causal chain is
not within ordinary experience.' Thus, a coherent and uniform treatment of
uncertain evidence, scientific theories and variable data in toxic tort cases is
timely in Australia.

Symmetry of information, discussed in Part I of this paper, is a way to restore
the traditional ‘economically efficient’ solutions, such as Pareto optimality, that
do not hold without it.> Although non-cooperative dynamic game theory’ can
help when there is an asymmetry of information, legal fairness demands that the

t Part I of this article appeared in Volume 21(3) of the University of New South Wales Law Journal.
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parties and the decision maker have access to the information and treat it
according to well demonstrated methods for the analysis of causation. Symmetry
of information fits with both economic efficiency and with liability rules
formulated in terms of ‘durability’, rather than efficiency. ‘Durability’ means
that the parties would not unanimously reject a decision if they took a vote after
pooling all of their private (undisclosed) information. Such analysis needs an
informal framework for uncertain cause-in-fact and proximate cause with:

e numerical representations of vague (‘possible’), uncertain (‘probable’)
or probabilistic statements;

e alist of symbols (eg, ‘for some”);

¢ axioms and postulates (eg, ‘due process’);

¢ rules for combining symbols (eg, ‘If ... , If ..., If, ... Then ...”);
¢ rules for inference;

e data protocols;

* acontingent process for overall evaluation by all parties; and

¢ a jurisdictionally appropriate social calculus (eg, ‘risk-cost-benefit’
balancing).

The next sections provide some substance to this framework, exemplifying its
potential for judicial reasoning in toxic tort and environmental law. The focus is
on human health. Extending the framework we propose to other scientific and
technical areas does not present difficulties and is not discussed.

A. Context

In toxic torts, neither scientific nor legal causation requires, nor can hope for,
certainty. An American case, Allen et al v US" illustrates how a court deals with
scientific uncertainty. The plaintiffs sued the US Government, attempting to
recover for leukemia allegedly caused by fallout from testing nuclear devices.
The court discussed “natural and probable” consequences, the “substantial
factor”, “but for” and “preponderance of the evidence” tests; and opted for the
“substantial factor” test.

However, the court established that each plaintiff should show three things
with the preponderance of the evidence test. First, that the probability of
exposure to fallout results in doses in significant excess of ‘background’.
Secondly, that the injury is consistent with those known to be caused by ionising
radiation. Thirdly, that individual claimants resided near the Nevada Test Site
for at least some of the years when the tests were conducted. The court also
found that lack of statistical significance does not necessarily mean that the
adverse effect is not present.’

4 Allen et al v US 588 F Supp 247 (1984); reversed on other grounds, 816 F 2d 1417 (10th Cir 1988);
certiorari denied, 484 US 1004 (1988).
5 Ibid at 416-17.
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Although the prevailing standard of proof in tort law is the preponderance of
the evidence, the admissibility of epidemiological and other ‘medical’ evidence
is governed by the “reasonable medical probability” standard.® If this standard
is higher than the preponderance of the evidence, its stringency affects the
plaintiff more so than the defendant, and vice versa.

When the scientific basis of causation (eg, that a particular dose-response
model was biologically more plausible than another) is construed as a
‘possibility’, it is insufficient to demonstrate legal causation by the
‘preponderance of the evidence’.” These difficulties, and the often conjectural
model of dose-response, increasingly force the legal system to ask science for a
‘proof’ of causation that allows for the symmetric treatment of uncertain and
heterogeneous scientific information.®

Such a demand is correct. The means are available closely to approximate an
accurate assessment of the uncertainties. Modern formal causal probabilistic
reasoning can result in a more just resolution of tortious and environmental
disputes. The end is the just apportionment of tortious liability.

There are, however, some difficulties. The judicial process requires reasoning
with uncertain data and incomplete models. Statistical methods are used to
extrapolate to an area far removed from the ‘relevant range’ of the observations.
The second difficulty is the need to reconcile legal reasoning about causation
with probability weighted factual patterns. The difficult problem of whether any
interpretation of probability number (such as logical or personal-subjective) can
truly guide behaviour is unresolved. Fortunately, we do not need to resolve
these problems because the frame of reference that always improves the state of
knowledge is preferable as a matter of legal fairness.

B. Probabilities

Causation and probabilities coexist. A physical regularity becomes causal
when it can be identified and assessed. The total process may include a number
of regularities or ‘laws’. Is the regularity (the ‘law’ mathematically described
through, say, differential equations) that determines the uncertainties, with
statistical analysis merely providing reliable numbers for the coefficients of the
differential equation? Or are probabilities fundamental measures inherently and
inexorably part of that and any physical and behavioural law?

Briefly, there are different views of probabilities. They have been understood
as either subjective measures of belief or objective as the result of the long-term
replication of the same physical experiment. Epistemic probabilities describe
ignorance about a known deterministic process. Frequencies are justified as
probabilities by the indefinite replications of the same generating process. They

6 Cottle v Superior Court 3 Cal App 4th 1367 (1992) at 1384-5.

7 See Green v American Tobacco Co 391 F 2d 97 (Sth Cir 1968); rehearing (en banc), 409 F 2d 1166 (5th
Cir 1969). Bowman v Twin Falls 581 P 2d 770 (Id 1978) at 774 held that: “to require certainty when
causation itself is defined in terms of statistical probability is to ask for too much”.

8 H Harris, “Toxic Tort Litigation and the Cause Element: Is There Any Hope of Reconciliation?” (1986)
40 Southwestern Law Journal 909.



158 Toxic Torts and Causation: Means-Ends Analysis Volume 22(1)

are the empirical probablhtles Quantum probabilities represent irreducible
natural randomness.’

C. Some Reasons for These Differences

The imperfect knowledge of the true mechanical state of a system led to
epistemic probabilities. The probability attached to the representation of the
system, in Maxwell’s view, is the a priori “measure of the degree of ignorance of
the true physical state of the system”.' Boltzmann’s probability represents an
average state of the system, during a specific interval of time; Maxwell’s results
from cons1der1ng a very large number of equal systems, each with different
initial states.'

For Einstein, in 1909 and later, probabilities were determined by the limit of
relative frequenc1es they were objective measures of the state of a system.'?
Probabilities, in his view, are time-average measures of the evolution of the
physical process. Einstein also stated the principle that: “only the theory decides
what can be observed”.”® In 1922, Schrodmger believed that physical processes
are statistical: deterministic causation is merely commonplace thinking. He
found determinism “prejudicial”."* Reichenbach, sometime later, developed the
nexus between the continuous causal evolution of the system and its probablhstlc
interpretation. He held the view that probabilities are relative frequencies."

Borel’s ?robablhty measures were defined by convention, not essential
properties. ~ A probability is a degree of belief: the individual’s choice of a bet
that makes it subjective when the probability values are sufficiently away from 0
or 1. He explains the concept of “practical certainty” as an event characterised
by a sufficiently large probability number, and vice versa.

Probability, as an inherent part of physical laws, through ‘becommg (rather
than ‘rigidly existing’) is a physical property that is probabilistic."” Gibbs’ work
through the random drawing from a large number of items that are, at least m
principle, fully described was based on epistemic probabilities.'

For von Mises, probabilities apply to homogeneous events that are
characterised by large number of repetitions.”” He rejected the idea of
sub_]ectlve probabilities, preferrmg the random choice of elements out of the

“collective” of those elements.”” If these collective related conditions for
determining a probability number do not obtain, then there is no probability.

9 J von Plato, Creating Modern Probability, Cambridge University Press (1994) p 167.

10 Ibid, p 75 (footnote and emphasis omitted).

11 Ibid, p 76 (footnote omitted).

12 A Einstein, “Zum Gegenwiirtigen Stand des Strahlungsproblems” (1909) 10 Physikalische Zeitschrift

185.
13 Von Plato, note 9 supra, p 158.
14 Ibid, p 150.

15  H Reichembach, “Stetige Wahrscheinlichkeitsrechnung” (1929) 53 Zeitschrift fiir Physik 274.
16  Von Plato, note 9 supra, p 43.

17 H Weyl, Philosophie der Mathematik und Naturwissenschaft, Oldenbourg (1927).

18  JW Gibbs, Elementary Principles of Statistical Mechanics, Dover (1960) p 17.

19 R von Mises, Mathematical Theory of Probability and Statistics, Academic Press (1964).

20  Ibid, pp 183-97.
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Kolmogorov developed a set-theoretic interpretation of probability in the
1920s*" in contrast to von Mises’. According to this interpretation, a probability
admits the concept of dependence: the practical “causal connection”.> In the
1960s, in a reversal, Kolmogorov’s probabilities used events with long
sequences of repetitions. A probability number is a ‘constant’ with objectively
determined numerical characteristics. It has both probabilistic (the fluctuation
about the constant value) and frequentistic (law of large numbers) aspects.
Kolmogorov believed that empirical studies determined the nature of the
probability laws (that is, the distribution of elementary events) inductively.

Should, then, probabilities be related to imperfect measurement, considering
that the laws of nature are unchangeable, or not? The former vision is
deterministic and epistemic. De Finetti held to the contrary: the laws of nature
are statistical regularities, thus requiring the “sharing” of properties between the
two polar views. Probabilities are primitive qualitative characterisations of
human behaviour that can be numerically represented. De Finetti’s concept of
coherence, which requires that a rational person would not engage in bets
whereby he or she would surely loose, is most compelling.*

De Finetti demonstrated that coherence means that any probability measure
associated with that bet satisfies the additivity axiom for finite events. This is a
critical aspect of decision making under uncertainty. De Finetti’s work
transcends epistemic and other probabilities; natural processes are
indeterministic with subjective but coherent probability numbers characterising
their outcomes. These probabilities are not influenced by the reasons for
ignorance, they are independent of deterministic or indeterministic assumptions
about any process. Subjective probabilities quantify degrees of belief through
coherence. Using axioms, he also developed the qualitative basis of probability:
the calculus of probability is the result of a primitive statements such as ‘not less
probable than’ linking common expressions to a formal system of analysis.”* He
stated:

For ... an objective meaning to probability, the calculus ... ought to have an
objective meaning, ... its theorems ... express properties that are satisfied in reality.
But it is useless to make such hypotheses. It suffices to limit oneself to the
subjectivist conception, and to consider probability as a degree of belief a given
individual has in the occurrence of a given event. Then one can show that the ...
theorems of the calculus of probability are necessary and sufficient conditions ,,. for
the given person’s opinion not to be intrinsically contradictory and incoherent.

21 A Kolmogorov, “Logical Basis for Information Theory and Probability Theory” (1968) 14 Institute of
Electrical and Electronic Engineers: Transactions of Information Technology 662.

22 Von Plato, note 20 supra, p 205.

23 Ibid, p 272.

24 Ibid at 273-6.

25 B de Finetti, “Fondamenti Logici del Ragionamento Probabilistico” (1930) 5 Bollettino Unione
Matematica Italiana 258 at 260.
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(i) Remark

Probabilities (numbers between 0 and 1 including these two limits) are not
‘cardinal’. It cannot be said that the probability of 1 is twice as large as the
probability of 0.5. If the probability of response in a year ¢ is p, then the
probability scale can be transformed to yield a cardinal measure that permits
comparisons such as ‘twice as large’. The transformation is r(probability
number) = {-[natural logarithm (1-probability number)]}. At low probability
numbers, the transformation is unnecessary: r(pr) is approximately equal to the
probability number (pr) itself.

II. REJECTION OF PROBABILISTIC REASONING AND
IMPLICATIONS FOR TOXIC TORT LAW

Causation in toxic tort law is synthesised as the process characterised by
heterogeneous and uncertain events:

[source(s) of concern; mass, magnitude, probability, time, type] => [transport, fate;
concentration, time, probability] => [exposure; type, duration, context, probability]
=> [dose; type, duration, context, probability] => [response; cancer, mutagenicity,
teratogenicity, toxicity, probability] => [acceptability of risks; individual,
population, type, magnitude, probability].

The requisite, before judicially limiting a toxic torts causal network, is the
formal concatenation of the essential elements, accounting for uncertainty.

Australian courts have been reluctant to adopt probabilistic reasoning in
determining causation, particularly in negligence cases, preferring instead to
allow the trier of fact to temper the inadequacies of the ‘but for’ test with the
application of ‘common sense’.® The basis of this rejection may be found in the
need of the courts to ensure that causation is grounded in realism and experience.
In the words of Dixon J, in Briginshaw v Briginshaw & Anor:

The truth is that, when the law requires the proof of any fact, the tribunal must feel
an actual persuasion of its occurrence or its existence before it can be found. It

26 A leading case establishing the common sense test is Bennett v Minister of Community Welfare (1992)
176 CLR 408 at 412, per Mason CJ, Deane and Toohey JJ: “In the realm of negligence, causation is
essentially a question of fact, to be resolved as a matter of common sense. In resolving that questions,
the ‘but for’ test, applied as a negative criterion of causation, has an important role to play but is not a
comprehensive and exclusive test of causation; value judgments and policy considerations necessarily
intrude”. This statement stems from the majority judgment in March v E & MH Stramare (1991) 171
CLR 506, and has since been approved in Steele v Twin City Rigging Pty Ltd (1993) 114 FLR 99 at 109,
and Medlin v State Government Insurance Commission (1995) 182 CLR 1 at 6. An argument for
probabilistic reasoning was, however, made by Murphy J in TNT Management Pty Ltd v Brooks (1979)
23 ALR 345, which was discussed in detail in Part I of this article.
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cannot be found as a result of a nygre mechanical comparison of probabilities
independently of any belief in reality.

This is naive in light of the complexity of causal patterns, their probabilistic
nature and our discussion of probability numbers. Reliance on “actual
persuasion” is inappropriate and leads to unjust results. The belief of causation
“mn reality” confuses legal causation with scientific and statistical causation. The
lawyer must demonstrate that one causal pattern, for a set of given
circumstances, is more likely than not. Legal causation is one probable outcome
out of manys; it is the single causal path sufficient to resolve the dispute.® The
scientist searches for verifiable results, given the state of knowledge,” but faces
numerous alternatives, each of varying probability and refutation.

As the legal system attempts to determine factual cause, what appears to be an
objective search for truth is corrupted by normative judgments about facts.*
Consider factual causation stopped, somewhere in its logical continuum, by
proximate cause,” the judge-made idea of justice, legal and political policy.
This most subjective criterion can determine legal liability; it is evident in the
Australian ‘common sense’ test.

‘Proximate cause’ and ‘cause-in-fact’ form legal causation in tort law. This
distinction is more pronounced in negligence than in product liability law.
Cause-in-fact is the factual chain of events leading to ultimate injury.”
Recollect the dissent by Andrews J in Palsgraf v Long Island RR,” where he
stated:

What we do mean by the word ‘proximate’ is that, because of convenience, of
public policy, of a rough sense of justice, the law arbitrarily declines fo trace a
series of events beyond a certain point. It is all a question of expediency.

It is based on: “[t]he foresight of which the court speaks assumes prevision.””

We think that expediency is an excuse, not a reason.

27 (1938) 60 CLR 336 at 361 (emphasis added). This was followed in the mesothelioma case of Wintle v
Conaust [1989] VR 951 at 953. This statement may also be interpreted as raising the required standard
of proof (on the balance of probabilities) above 51 per cent.

28  IMacduff, “Causation, Theory and Uncertainty” (1978) 9 Victoria University of Wellington Law Review
87 at 93.

29 E Adeney, “The Challenge of Medical Uncertainty: Factual Causation in Anglo-Australian Toxic Tort
Litigation” (1993) 19 Monash University Law Review 23 at 24.

30  J Cohen, “The Value of Value Symbols in Law” in Smith and Weisstib (eds), The Western Idea of Law,
Butterworths (1983) 1 at 8.

31  See Chapman v Hearse (1961) 106 CLR 112 at 122.

32  The California Supreme Court “disapproved” the use of “proximate cause” in favour of the “substantial
factor”. See Mitchell v Gonzales 54 Cal 3d 1041 (1991), cited in Pamela Lee v Heydon (1994) CDOS
4265 at 4265-6. In the Restatement of Torts, 1 § 431 “substantial’ relates to the defendant’s conduct to
the extent it results in harm which “reasonable men ... regard ... as cause, using the word in the popular
sense”.

33 162 NE 99 (NY 1928).

34 Ibid at 103.

35  Ibid at 105.
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The more removed or unusual the occurrence of factors, the more likely it is
that the causal chain is either conjectural or not foreseecable. What is normal is
foreseeable.”® But, what is foreseeable is in the eye of the beholder. The
California Supreme Court stated:

Experience has shown that ... there are clear judicial days on which [a jury] can
foresee forever and thus determine [causation,] but none on which that foresight
alone provides a socially and judicially acceptable limit on recovery of damages for

injury.

This, we suggest, holds for all fact finding in toxic torts because critical facts
often can be remote from each other, separated perhaps by years of latency.”

The resolution of toxic tort disputes seems to: (a) confuse deterministic with
probabilistic causation; and (b) use tests couched in probabilistic language and
yet resist mathematical probabilistic balancing. There is a pernicious reduction
of complex causal paths to a minimal path resolved by common sense arguing
that probabilistic methods do not adequately link the individual cause (or
defendant) with the individual effect (or plaintiff).”’ It is analytical escapism.
The result is unjust for the defendant, who faces unpredictable heuristics and
bizarre scientific theories; and unjust for the plaintiff, who may have no recourse
for an arbitrary finding of lack of causation.

A. Means-Ends Analysis: Symmetric Treatment of Causal Events and
Uncertainty

A just process requires a symmetric treatment of causal facts between plaintiff
and defendant. The parties to the dispute, the fact finder and the legal decision
maker would then have equal access to the information and its processing.
Naturally, the parties will assign different weights to the evidence and the factual
links. But consistency and coherence is guaranteed using probabilistic measures
and by analytically combining evidence. Errors would be discovered in the
judicial proceedings; symmetry is unaffected.”

This symmetry would fit well with evidence expressed in terms of health
numbers. Take, for example, a mathematical representation of risk: the relative
risk, which indicates the ratio of the incidence rate of disease in a group exposed

36  Foresceability concerns the determination of duty. See Roland v Christian 69 Cal 2d 108 (1968).

37 Thing v La Chusa 48 Cal 3d 644 (1989) at 668.

38 Law and economics theorists argue that legal causation should be replaced by ‘social efficiency’ via a
form of Judge Learned Hand’s test, US v Carroll Towing 159 F 2d 169 (2nd Cir 1947). Because this test
yields an expected value, probabilistic causation remains.

39  Adeney, note 29 supra at 59.

40  Hyatt v Sierra Boat Co 79 Cal App 3d 325 (1981) at 337-9, rejecting expert’s testimony not being
reasonably with the field of expertise; Pacific Gas and Electric Co v Zuckerman 189 Cal App 3d 1113
(1987) at 1135: “the value of opinion evidence rests not only in the conclusion reached but in the factors
considered and reasoning employed”. In accord: De Luca v Merrell Dow Pharmaceutical Inc 791 F
Supp 1042 (DNJ 1992) at 1047.
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to a toxic chemical to the incident rate of disease in a non-exposed group.41
Where relative risk is high, legal and scientific causation can be established with
little difficulty. But when the relative risk is close to 1.0 and is statistically
significant, the results for the plaintiff can be whimsical or unjust, or both. This
is the result of judicially demanding a legal balancing based on the 51 per cent
rule. The relative risk that the plaintiff must demonstrate is much larger than the
toxic tort related relative risk, which is often about 1.2. The US Ninth Circuit
Court of Appeals has held that for “an epidemiological study to show causation
under a preponderance of the evidence standard, the relative risk ... will, at the
minimum, have to exceed 2’7 2 However, some state courts have recognised
that a lower relative risk number can be acceptable under suitable
circumstances.*

III. FACTUAL CAUSATION: EXPOSURE AND RESPONSE

Uncertainty may be analytical and conjectural, where formal analyses can be
applied, and be ‘transcientific’, where scientific constructs are put forth as
plausible hypotheses but cannot be answered by science. This raises two
considerations that affect the law of toxic torts:

1 Scientific conjectures arise when causal or explanatory models are
unknown or incomplete and the supporting data are either missing,
imprecise, or even contradictory.

2 Mathematical objects (such as probabilities) describe uncertainty,
understood as the combination of the variability of the data and the
specification of the model. The former results from natural sampling
variability. The latter refers to the choice of mathematical form (linear
or non-linear) of the dose-response function and to the inclusion of
relevant independent variables.

Ad hoc qualitative choices, which limit the set of possible events to be
considered, reduce the combinations of inputs and methods achieving
manageable problem statements.* This creates the danger that consensus on the
elements and events to be included in the choices will merge the objectives of
the analysis with its cost, and can be influenced by who pays for mitigating risks.
The conclusions contain the premises: an inductive fallacy.

41 EK Christie, “Toxic Tort Disputes: Proof of Causation and the Courts” (1992) 9 Environmental and
Planning Law Journal 302 at 310; PF Ricci and LS Molton, “Risk and Benefits in Environmental Law”
(1981) 214 Science 1096.

42 Daubert v Merrell Dow Pharmaceuticals Inc 43 F 3d 1311 (9th Cir 1995) at 1321, (citations omitted).

43 Hall v Baxter Healthcare Corp 947 F Supp 1387 (D Oreg 1996) at 1403.

44  The problem is that the number of options may reach into the thousands.
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A. Context

The prototypic exposure relationship (a subset of the fuller emission-
exposure-response paradigm) in toxic tort law is:

[site (or component); emissions; transport and fate; uptake] = [exposure time series
of concentrations].

Each bracketed element includes probabilistic inputs, models and outputs. The
observed output (eg, ozone concentrations measured in Sydney) is one of many
possible samples generated by a complex physico-chemical process. The US
Environmental Protection Agency (EPA) has used, for environmental risk
calculations, the Reasonable Maximum Exposure measure. It indicates the
highest exposure that could reasonably be expected to occur for a given exposure
pathway:* the upper 95 per cent confidence limit on the normally distributed
concentrations.*® The upper 95 per cent confidence limit on the normal (or log-
normal) distribution is also used for the duration and frequency of exposure. If
the data are insufficient for statistical analysis, then the highest modelled or
measured concentration is used.*’

Currently, the guidelines issued by the US EPA call for the distribution of
exposure, achieved by propagating the uncertainty using probability distributions
associated with each input and output in the chain, often through Monte Carlo
simulation.”® This partially causal chain includes emission, transport and uptake
across several components of the exposure assessment.

(i}  Probability of Response

The risk to an individual of developing an adverse health response, such as
cancer, is defined as the probability that the individual will develop the disease,
in a period of time, given survival until then. Individual risks alone do not show
the impact of exposure on the population at risk. The full representation requires
considering the population (aggregate) risk and the distribution of risk over
those affected. This is provided by the distribution of ‘remaining life-years in
the population’.

B. Cancer as an Example of a Causal Network Leading to Probabilities

The biological processes leading to cancer yield an accurate mathematical
description of the cancer process through a dose-response model. The simplest
is the ‘one-hit’ function: it describes how a single chemical interaction between
the chemical and the DNA results in a probability of cancer. The multistage

45  US EPA, Risk Assessment Guidance for Superfund, Vol I Human Health Evaluation Manual (Part A),
EPA/540/1-89/002 (December 1989).

46  US EPA, Supplemental Guidance to RAGS: Calculating the Concentration Term, PB92 - 963373 (May
1992) at 2.

47  Ibid at 3.

48  USEPA, Guidelines for Exposure Assessment, 57 FR 22888-938 (1992).
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model is biologically more realistic because it describes the number of stages®
through which an affected cell line must pass, and the number of sequential hits
it must suffer, without repair, before it becomes tumorigenic. The results of a
choice between one model and another can be astounding: differences in the
dose, from the same level of risk, vary by several orders of magnitude.

A simple view of the cancer process consists of initiation (when an
irreversible lesion of the DNA occurs), promotion (the biochemical process
accelerating the tumorigenic process), and progression (describing the now
precancerous cell’s progression toward malignancy). If a carcinogen does not
affect the DNA directly, it is likely that the particular dose-response function has
a threshold: a level below which exposure does not trigger cancer. More
biologically plausible cancer dose-response models, which describe the
interaction of a chemical with a cellular target, and the birth and death processes
of cells, are being advanced and used.

These considerations raise some statistical issues. The first, relevant to
causation regardless of the type of model, is the propriety of extrapolations
outside the relevant range of the data to very low exposure, or doses. These are
the doses that the toxic tort plaintiff encounters. Even with the same data set,
different forms of the multistage model yield different low dose relationships,
but very similar results in the relevant range of the data. The second is that the
natural pharmaco-kinetic biological processes eliminates some of the mass of the
original chemical to which the plaintiff has been exposed, thus reducing the mass
of the original chemical that reaches the DNA.* Thirdly, these models follow
the assumption that cells at risk are transformed independently of one another.
This can be questionable because evidence suggests that there is loss of
intercellular control.

This discussion suggests two things. First, there are competing theories
resulting in ad hoc reasoning to simplify complex scientific matters for
regulatory and tort law. Secondly, there is a logical discontinuity between
scientific evidence adduced to approximate causation, accounting for incomplete
knowledge and variable data. Following Richard Jeffrey, the appropriate legal
view of causation must assign a probability number conditioned on the available
evidence either to accept or to reject that causation.’’ This contrasts with
empirical philosophers such as Churchman, Braithwaite and Rudner who believe
that, as Richard Jeffrey summarises, “ethical judgments are essentially involved
in decisions as to which hypothesis should be included in the body of

49  The actual definition of a ‘stage’ in cancer process is difficult, “[a] rough general rule is that if a change
is not likely to have happened within 10 years of a cell being ready for it, then it would count as a stage,
but if it is likely to take less than a year it would not”: M Kiah, JD Watson and H Winsten (eds), Origins
of Human Cancer, vol 4 Cold Spring Harbor Laboratory NY (1977) p 1403.

50  One way for overcoming this problem is to use physiologically based pharmaco-kinetic (PB-PK) models.
These yield the concentrations of the ultimate by-products of biochemical reactions, from the original
chemical, to the target tissue, cell or DNA. This is the dose, often measured in milligrams per kilogram
of body weight per day.

51 R Jeffrey, Probability and the Art of Judgement, Cambridge University Press (1992). See, in particular:
ch2,pls.
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scientifically accepted propositions”.>> In judicial proceedings about scientific
causation, the opposite should be true. An example is the use of probability
values™ to justify the acceptance or rejection of a statistical finding. There is
Jjudgment about a final choice, but it is factual and based on probabilistic
reasoning that can be refuted scientifically.

(i) Animal Studies
" In vivo animal studies are used to study disease™® for many different reasons.
Apart from the practical consideration that animal bioassays can provide faster
results than epidemiological studies, their primary advantage is that they are well
controlled, unlike epidemiologic studies. However, there are a number of
shortcomings in these studies. Animals in experimental studies are often
exposed through routes, eg gavage, which differ from human exposure. The
biochemical and physiological make-up of experimental animals can be
different, requiring interspecies conversions. The assumption of intraspecies
homogeneity is questionable because of genetic differences. The exposure
among animals in the same dose group may vary, animals may gain and lose
weight at different rates and undetected infections may occur. There also is
increasing concern with oncogenes (cancer causing genes) in some commonly
used animal strains.

Although animal studies are critical in dealing with causation, their use in
environmental law can result in questionable practices. One is related to the
conjectural aspects of dose-response models outside the relevant range of the
data which has led to averaging different animal results. For example, in the
early stages of regulating benzene, a known leukaemogen, animal data were used
with different dose-response models. The human risk estimates were developed
from the geometric mean of the slopes from these models as estimated from
CFW mice, who developed forestomach, larynx and oesophagus squamous cell
papillomas and carcinomas; ® SWR/J mice; and Sprague-Dawley male and
female rats. To the extent that humans do not have forestomachs, it is unclear
how that information is relevant to regulating human leukemic risks, considering
that the animal cancers are solid cancer, and the leukemias are not.

Some of these uncertainties have lead the US EPA to associate letter “weights
of evidence” with each cancer potency factor used in regulatory risk

52 Ibid, p 14 (footnote omitted). Jeffrey cites Rudner’s view that: “for, since no scientific hypothesis is ever
completely verified, in accepting a hypothesis the scientist must make the decision that the evidence is
sufficiently strong or that the probability is sufficiently high to warrant the acceptance of the hypothesis
... [which] is going to be a function of the importance, in the typical ethical sense, of making a mistake
in accepting or rejecting the hypothesis” (emphasis in original).

53  The probability value is the proportion of events, out of the total number of events, which do not support
the null hypothesis of no effect.

54  Office of Technology Assessment, Assessment of Technologies for Determining Cancer Risks in the
Environment, 1981; TJ Gill, GJ Smith, RW Wissler and HW Kunz, “The Rat as an Experimental
Animal” (1989) 245 Science 269.

55  Gill et al, note 54 supra at 272. See also S Reynolds, S Stowers, R Patterson, R Maronpot, S Aaronson
and M Anderson, “Activated Oncogenes in B6C3F1 Mouse Liver Tumors: Implications for Risk
Assessment” (1987) 237 Science 1309 at 1310.

56 The data are cited in the US EPA data base IRIS, 11 February 1994.
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assessment.”’ For instance, for lead, the weight of evidence classification is B2,
“probable human carcinogen”, which is a way of stating that cancers developed
at multiple sites in animal studies. Human evidence of cancer is “inadequate”.
Thus, EPA’s recommendation was that numerical (cancer) risk estimates should
not be used for lead.

The US EPA’s assessment of carcinogenic risk results from considering “[t]he
reliability of conclusions ... from the combined strength and coherence of
inferences appropriately drawn from all of the available evidence”’ ®  The
“science policy position” is that “tumor findings in animals indicate that an agent
may produce an effect in humans.” The absence of tumors in “well-conducted,
long-term animal studies in at least two species provides reasonable assurance
that the agent may not be a carcinogenic concern for humans”.%

C. Biological Causation

The US EPA states that the most realistic dose-response models are those
using in vivo data, although short-term mutagenic tests are also relevant as are
the activation of oncogenes by types of mutations (eg, chromosomal
translocations).®!  This information can clarify the linearity or non-linearity of
the dose-response model. The strength of the causal inference depends on the
data®® and on the theoretical biological mechanism that determines the type of
cancer dose-response model to be adopted. The US EPA states that:

The carcinogenicity of a direct-acting mutagen should be a function of the
probability of its reaching and reacting with DNA. The activity of an agent that
interferes at the level of signal pathway with many receptor targets should be a
function of multiple reactions. The activity of an agent that acts by cay}sing toxicity
followed by compensatory growth should be a function of the toxicity.

The cancer process is an example of scientific conjectures about the shape of
the dose-response, the experimental or epidemiologic data, or both. The process
involves such steps as: cellular growth, differentiation, replication and death,
including feedbacks that can result in non-linear dose-response. A carcinogenic
substance can interfere with normal genetic and biochemical processes in
different ways and transform a normal cell into a tumorigenic one. Such
transformation can occur through faulty enzymatic repair of a heritable chemical

57 The “weights” are: (A) human carcinogen; (B1) probable human carcinogen from “limited” human data;
(B2) probable human carcinogen with sufficient evidence in animals and inadequate or no evidence in
humans; (C) possible human carcinogen; (D) not classifiable as to human carcinogenicity; and (E)
evidence of noncarcinogenicity for humans. See, Risk Assessment Guidance for Superfund, Part A,
EPA/540/1-89/002 at 7-11.

58  Draft Revisions to Guidelines for Carcinogen Risk Assessment, EPA 600/BP-92/003, (1992) at 9.

59 Ibidat2l.

60 Ibid.

61  See, for discussion, JM Bishop, “Oncogenes and Clinical Cancer” in RA Weinberg (ed), Oncogenes and
the Molecular Origins of Cancer, Cold Spring Press (1989) 327.

62 Note 58 supra at 7.

63  Ibid at 3.
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damage.64 The factors include ‘signalling’ and control of genetic transcription,
hormone chemistry, and changes that can affect the structure of the cell (eg the
permeability of the cell’s wall).

Furthermore, the linkage between predisposition and exposure to
environmental factors is becoming increasingly clear. For example, genes
YP1A1 and Ha-ras are involved with exposure to tobacco smoke in causing lung
cancer (with Ha-ras causing non-adenocarcinomas in African-Americans); gene
CYP2D6 and tobacco smoke, asbestos, and PAHs cause lung cancer; and GST1
and aromatic hydrocarbons also induce lung cancer (adenocarcinoma).

Understanding the biological processes leading to cancer helps to develop
causally plausible dose-response models. Electrophilic chemicals that bind with
the DNA and are potential mutagens, are analysed through structure-activity
models to determine how analogous they are to known mutagens. The rates of
formation of adducts, such as the hemoglobin adducts, is demonstrable at very
low dose levels,”® the functional relationship may be either linear or non-linear,
depending on the chemical.®’ Radioimmunoassay can detect chemical adducts
at extremely low concentration.%

Enzyme systems have been found to have several functions. They co-operate
in cell replication, controlling the cell cycle, and the expression of genes via
transcription.”  Thus, Koshland concluded that: “spontaneous errors ... from
intrinsic DNA chemistry in the human body are usually many times more
dangerous than chance injuries from environmental causes”.”® There may be
differences among the species used to establish whether a chemical is
carcinogenic in humans. Aspirin, for instance, is known to cause birth defects
(not cancer) in rabbits but not in_humans. Humans have an enzyme repair
mechanism that rabbits do not have.”"

Finally, chemicals can interact to cause cancer. The US EPA, for Polyclic
Aromatic Hydrocarbons (PAHs), assumed that the mixture of like chemicals are
equally potent and has used an approximate upper bound on the estimated
coefficient of the Linearized Multistage model (LMS) dose-response function to

64  Ibid at 4.

65  National Research Council, Science and Judgment in Risk Assessment, National Academy Press,
Washington DC (1994) at H-2-5, Table H-3.

66 MA Pereira and LW Chang, “Binding of Chloroform to Mouse and Rat Hemoglobin” (1982) 39
Chemico-Biological Interactions 89.

67 E Bayley, T Connors, P Farmer, S Gorf, and S Rickard, “Methylation of Cysteine in Hemoglobin
Following Exposure to Methylating Agents” (1981) 41 Cancer Research 2514.

68 IC Hsu, MC Poirier, SH Yuspa, RH Yolken, and CC Harrs, “Ultrasensitive Enzymatic
Radioimmunoassay (USERIA) Detects Femtomoles of Acetylaminofiuorine-DNA Adducts” (1980) 1
Carcinogenesis 455.

69  E Culotta and DE Koshland, “The Molecule of the Year: How DNA Repair Works its Way to the Top”
(1994) 266 Science 1926 at 1927.

70  DE Koshland, “Molecule of the Year: DNA Repair Enzymes” (1994) 266 Science 1925 at 1925.

71 Ibid.
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set acceptable exposure levels for that mixture.”” The biochemical and cellular
paths taken by PAHs, in general, and by B(@)P in particular, are:”

[exposure = partition and distribution = metabolic transformations = adduct
formation OR cell proliferation = mutation  repair = end, OR = cell
proliferation OR death = cell death = end, OR proliferation => adduct formatign
= mutation ¥ repair = end, OR second mutation = cell proliferation => tumor].

The metabolism of PAHs in rodents is similar to that of humans. However,
the rate of formation of specific adducts and the elimination of products, (the
formation and disappearance of an epoxide) varies from species to species. A
key aspect of the carcinogenicity of B(a)P is that it is a genetic toxicant that
requires metabolic activation before it becomes a carcinogen. The metabolic by-
product binds with the DNA, forming a covalent adduct, which, if unrepaired,
can initiate the cancer process.

IV. QUANTITATIVE MODELS OF DOSE-RESPONSE

An added difficulty is that the exposure in toxic tort disputes is generally
orders of magnitude lower than the experimental exposure, requiring either
predictions or extrapolations to values very near zero. Paradoxically, it is often
difficult to discriminate among the alternative models in the relevant range of the
data. A multistage model generally fits the data better that the single-hit model.
The number of stages must have biological basis because too many stages (which
would result in better fit) may not be biologically plausible for a specific cancer.

The quantal (ie presence or absence of the cancer) form of the multistage
model has been the mainstay of regulatory work in American environmental
law.”” The US EPA used the Linearized Multistage dose-response model (LMS)
for most cancers.”® The LMS accounts for cellular changes occurring through
the transitions from the normal stage to the preneoplastic stage, and from that

72  Comprehensive  Environmental  Response,  Compensation, and  Liability  Act 1980,
(CERCLA/Superfund), 42 USC § 9601 et seq.

73  International Agency for Research on Cancer, Polynuclear Aromatic Compounds, Part 1, Chemical,
Environmental, and Experimental Data, vol 32 (1983); US EPA, Health Effects Assessment for
Polycyclic Aromatic Hydrocarbons (PAH) ECAO, EPA 540/1-86-013 (1986).

74  The meaning of the symbols is as follows: = means ‘results in’, | means ‘results in a repair’ and OR
means ‘an alternative’ (either a repaired DNA adduct or a mutation which goes unrepaired, but not both).

75 US Environmental Protection Agency, Risk Assessment Guidance for Superfund: Volume 1 - Human
Health Evaluation Manual, Part C, (Risk Evaluation of Remedial Alternatives) Interim, Publication
9285.7 01C (December 1991), Office of Emergency and Remedial Response, Washington DC.

76  The duration of exposure is lifetime. The form of the LMS is Pr(d) = 1 - exp[-(gg + g1d + qzd2 + ..+
gnd™). Pr(.) is the lifetime probability of cancer, d is the lifetime dose, and gi are the parameters of the
model estimated from experimental data. See KS Crump, “An Improved Procedure for Low-Dose
Carcinogenic Risk Assessment from Animal Data” (1984) 5 Journal of Environmental Pathology and
Toxicology 339.
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stage to the cancerous stage, through transition rates linearly dependent on
exposure.

The Moolgavkar-Venzon-Knudsen model (MVK) is a more biologically
realistic cancer dose-response model than the LMS because it consists of a
probabilistic birth-death staged cancer model.”®> The MVK model yields age-
specific cancer incidence and can describe initiation, promotion, inhibition, and
other aspects of exposure to a carcinogen. The essence of the model is that two
cellular transformations are required to change a normal cell into a tumorigenic
one; each transformation is a stage toward forming a tumor. The birth of a cell
occurs in the same stage where its parents reside. A heritable, unrepaired
transformation before cell division results in a transition to another stage. The
MVK model accounts for cytotoxic effects through the difference between birth
rate and death rate. The prevalence and incidence data are developed through
epidemiologic studies. Thus, the predictions from the MVK model can be
compared with existing data. This merges cellular models with epidemiological
data.

The shape of the function that relates dose to response in toxicological risk
assessment represents the non-linear cumulative distribution of responses for an
adverse health endpoint. It is important because its choice affects the
identification of the Lowest Observed Adverse Effect Level (LOAEL) and the
No Observed Adverse Effect Level (NOAEL). These phrases represent
exposures or doses that are used with factors of safety to determine acceptable
exposure (or dose) levels for toxicants.” Thus, a NOAEL/100 would mean that
the safety factor is 100.

A. Epidemiological Studies

Epidemiology is the study of the pattern of disease in human populations to
discover the incidence (rate of occurrence of new cases per period of time) or
prevalence (existence of cases in a suitable period of time) of a particular
disease, in order to predict the risk of others developing the same condition in
either similar or different settings. These results are particularly relevant in
establishing causal associations because the unit of analysis is the human being
and the study explains the changes in the prevalence or incidence rates.

77  Following LA Cox, “Assessing Cancer Risks: from Statistical to Biological Models” (1990) 116 Journal
of Energy Engineering 189 at 199: “Explanation of carcinogenesis is organized around a few key
parameters ... [which] provide the basic input data for the model, from which cancer hazard rates are
predicted .... Many of the key parameters [or surrogates for them] can potentially be measured directly in
the laboratory [or in cellular systems], rather than being estimated statistically from whole-animal
bioassay response data. Thus, the MVK model can potentially use the empirical data from molecular
epidemiology”.

78  Following SH Moolgavkar, “Carcinogenesis Modeling: From Molecular Biology to Epidemiology”
(1981) 7 Annual Review of Public Health 151, a simple formulation of this model yields the age-specific
incidence rate for the cancer, given: the initial population of normal cells, the rates of cell transformation
from the normal stage (containing stem cells) to the initiated stage (containing initiated cells) and from
the initiated stage to the malignant stage (containing malignant cells), the average rates of cell formation
(birth) and the average rates of cell death or differentiation.

79  Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, vol 1, EPA/540/1-89/002
(December 1989) at 7-2.
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However, reliable causal results often require lengthy and costly prospective
studies, perhaps over a generation.

The evidence of adverse effects in human studies has been sufficient to justify
intervention to eliminate the source of the problem, even if that evidence is
circumstantial and the biological mechanism is not yet fully known. This is
because:

unless epidemiologists have studied a reasonably large, well-defined group of
people who have been heavily exposed to a particular substance for two or three
decades without apparent effect, they can offer no guarantee that ggontinued
exposure to moderate levels will, in the long run, be without material risk.

Briefly, epidemiological risk models are generally based on one of two
hypotheses: the additive (absolute risk) or the multiplicative (relative risk)
hypotheses. The choice between these hypotheses depends on knowledge about
the incidence of the disease and a exposure-response model of the disease
process. For instance, the absolute risk model is based on the assumption that
the probability that the irreversible transformed cell will cause leukemia is
proportional to exposure, while the background probability of cancer is
independent of exposure. The relative risk is predicated on the hypothesis that
cellular transformation is proportional to background and exposure.

The US EPA also discusses causation statistically, in terms of meta-analysis,
and epidemiologically from Hill’s criteria, with “temporal relationship” being
“the only criterion that is essential”, with none of the criteria being conclusive by
themselves.?’ We review these aspects in the next section.

V. UNCERTAIN CAUSATION

The brief review of probabilities (epistemic and so on) and their uses as
weights associated with statements, theories and judgments had the purpose of
leading to reasoning about uncertain causation.

A. Fundamental Aspects

All uncertain quantities are treated as random variables and functions.
Uncertainties about functions, values, parameters, variables, and sampling are
handled in a uniform computational framework based on conditional
probabilities. Prior knowledge, information and beliefs can be represented by
prior probability distributions and by conditional probabilities, given the
variables influencing them. Legal causal reasoning suggests the ordered
heuristic:

80 R Doll and R Peto, “The Causes of Cancer: Quantitative estimates of Avoidable Risk of Cancer in the
United States Today” (1981) 66 Journal of the National Cancer Institute 1195 at 1219.

81  Note 58 supra at 15. The criteria are: temporal relationship, consistency, magnitude of the association,
biological gradient, specificity of the association, biological plausibility, and coherence.
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[Past experience = Empirical facts = Causal network] = [Legal cause-in-fact]

Legal reasoning is consistent with Richard Jeffrey’s “radical probabilism”®?
in which the assessment of the legal outcome goes beyond purely Bayesian
empirical reasoning® to include updating rules for prior beliefs and updating
based on the empirical findings. Specifically, it adds the principle that
retractions are allowed. Jeffrey has called traditional Bayesian analysis
“rationalistic Bayesianism”.%*

The reason for Jeffrey’s radical Bayesianism is that it is virtually impossible,
other than in the simplest of cases, truly to capture, in the ‘prior’ distribution,
required by rational Bayesianism because one is often unable “to formulate any
sentence upon which we are prepare to condition ... and in particular, the
conjunction of all sentences that newly have probability of one will be found to
leave too much out” ® Fortunately, following de Finetti:

Given a coherent assignment of probabilities to a finite number of propositions, the
probability of any proposition is 8gither determined or can coherently be assigned
any value in some closed interval.

(i)  Empirical Evidence Represented by Likelihood Functions

In developing ways to account for probabilistic evidence, empirical data are
summarised by likelihoods or likelihood functions. The likelihood is a
probabilistic measure of the support, given by the data, to a statistical hypothesis
about the possible values of a population parameter.”’ The likelihood principle
states that the effect, if any, on estimates of the parameters of the model depends
only on its likelihood.® ~The maximum likelihood estimate is the value that
maximises this likelihood, given the observed data and model.

B.  Updating, Priors and Coherent Beliefs®

A natural measure of uncertainty is the conditional probability, used in Bayes’
theorem;” where what is sought is the posterior probability. Conditioning is

82 Jeffrey, note 51 supra, p 3.

83 CGlymour, Theory and Evidence, Princeton University Press (1980) p 69.

84 Note 51 supra, pp 2-3.

85 Ibid, p 83.

86  Ibid, p 100. A

87 D Clayton and M Hills, Statistical Models in Epidemiology, Oxford Science Publications (1994).

88 We let y be a vector of uncertain quantities to be predicted (eg, health responses), x be a matrix of
explanatory variables (eg, one or more forms of exposures, socio-economic and other independent
variables), and p(y; x, b)) =pr(Y =y | X = x; b) be a prior conditional probability model for the relation
between the two random variables X, Y, and b the vector of parameters that needs to be estimated.
Given a probability model symbolised by pr(y; x, b), the likelihood function for b is pry; x, b)
considered as a function of b instead of as a function of x and y. Then L(b; x, y, pr) denotes the
likelihood function for b based on observed data vectors, for a probability model pr(.).

89 LA Cox and PF Ricci, “Dealing with Uncertainty: From Health Risks Assessment to Environmental
Decisionmaking” (1992) 118 Journal of Energy Engineering 77.
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understood as follows. If F(b) denotes the prior (subjective) joint distribution of
uncertain quantities, (F | L), read ‘F given L’, is the posterior probability
distribution (developed by Bayes’ Theorem using the prior distribution and the
likelihood functions) for the uncertain quantities in b, obtained by conditioning F
on the information summarised in L. When the calculation of the updated
probabilities (F | L) becomes computationally burdensome, there are methods,
based on belief networks to minimise the number of combinations and the
number of events.’

Evidence from multiple sources is combmed by successive conditioning.
Thus, if Ly and Ly are the likelihood functions generated by two independent
data sets, then, provided that L and L, are based on the same underlying
probability model, the posterior probability for the parameters, after
incorporating evidence from both sources, is [(F | L1) | Lp)].

(i)  Alternative Models and Assumptions

The calculation of (F | L) from prior beliefs formalised (perhaps through
elicitations of expert opinion) in F(.) and assumptions and evidence forming L(.)
depends on the probability model, pr [short for pr(y; x, b)], and on the data. It is
the uncertainty about the correct model, pr; (out of several alternative models)
that is often the greatest in causal models. To include it, let {pry, ... , pra}
denote the set of alternative models that are mutually exclusive and collectlvely
exhaustive. Also, L, ... , Ly denote the corresponding likelihood functions for
these competing models, and wq, ... , wy, are the corresponding judgmental
probabilities, or weights of evidence, that each model is correct. If the models
are mutually exclusive and collectively exhaustive, these weights should sum to
1. Then, the posterior probability distribution obtained from a prior F(.), data,
and model weights of evidence Wis e W is the weighted sum [wl(F | Ll) + ...+

we(F 1 L],

(ii) Advantages
There are several advantages to a formal probabilistic method because they
. 92 .
result in a coherent™ approach. These include:

1 Showing the range of possible values. Probability density functions
can be used to show how much statistical uncertainty can potentially be
reduced by further research which would narrow the distributions.

2 Distinguishing the contributions of different sources of evidence,
uncertainty and information, identifying where additional research is
most likely to make a significant difference in reducing final

90 A demonstration of Bayes’ theorem follows. From pr(A and B) = pr(A)pr(BIA) and pr(B and A) =
pr(B)pr(BIA) equate the right hand sides to obtain pr(AIB) = [pr(BIA)pr(A))/pr(B). See DV Lindley,
Bayesian Statistics: A Review, SIAM (1984).

91 ] Pearl, “Bayesian and Belief-Functions Formalisms for Evidential Reasoning: A Conceptual Analysis”
Proceedings of the 5th Israeli Symposium on Artificial Intelligence, December 1988.

92  The coherence means that the axiomatic properties of the system are established first, and the methods
follow.
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uncertainty. A measure used to resolve this issue is the expected value
of information.

Consistency with sensitivity analyses to show changes to the output (ie,
of the mean and mode of the probability density function), to uncertain
data and to the choice of a prior distribution.

Inclusion of the most recent information, without forcing the adoption
of default values or models, through Bayesian updating rules.

(iii) Disadvantages

The approach is only appropriate for a single decision maker, when the
distinctions among subjective and objective uncertainties are largely irrelevant.
All that matters is the joint posterior density function for all uncertain quantities.
Other limitations include:

Probability models cannot adequately express ignorance and vague or
incomplete thinking. Other measures and formal systems may have to
be used to characterise these forms of uncertainty such as ‘fuzzy’
numbers, arithmetics and logic.

A problem related to the need to specify a prior probability is that the
assumed probability model, pr(y; x, b), often requires unrealistically
detailed information about the probable causal relations among
variables. The Bayesian answer to this problem is that an analyst
normatively should use knowledge and beliefs to generate a probability
model. An opposing view is that the analyst has no such justification,
and should not be expected or required to provide numbers in the
absence of hard facts. This view has led to the Dempster-Shafer belief
functions to account for partial knowledge.95 Belief functions do not
require assigning probabilities to events for which they lack relevant
information: some of the ‘probability mass’ representing beliefs is
uncommitted.

An assessment that gives a unit risk estimate of 1 x 107 for a chemical
through an analysis that puts equal weights of 0.5 on two possible
models, one giving a risk of 5 x 10°/ and the other giving a risk of 1.5 x
107, might be considered to have quite different implications for the
‘acceptability’ of the risk than the same final estimate of 1 x 10°
produced by an analysis that puts a weight of 0.1 on a model giving a
risk of 1 x 1075 and a weight of 0.9 on a model giving a risk of zero.

Probability modelling makes a ‘closed world assumption’ that all the
possible outcomes of a random experiment are known and can be

93

95

Lindley, note 90 supra, pp 72-3.

Pearl, note 91 supra.

AP Dempster, “A Generalization of Bayesian Inference (with discussion)” (1968) 30 Journal of the
Royal Statistical Society (B) 205; G Shafer, “Belief Functions and Parametric models (with discussion)”
(1982) 44 Journal of the Royal Statistical Society (B) 322.
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described (and, in the Bayesian approach, assigned prior probability
distributions). This can be unrealistic: the true mechanism by which a
pollutant operates, for example, may turn out to be something
unforeseen. Moreover, conditioning on alternative assumptions about
mechanisms only gives an illusion of completeness if the true
mechanism is not among the possibilities considered.

The next section is a review of methods that are used in regulatory and toxic
tort law when dealing with multiple studies and uncertain causation. These are
used to:

e summarise independent results (such as the potency of a carcinogen)
that were developed independently from one other (meta-analysis);

e cumulate the uncertainty in a causal chain (using methods such as
Monte Carlo simulations); and

e deal with lack of knowledge about the distribution of the population
(perhaps using methods such as the ‘bootstrap resampling method’,
discussed below).

C. Empirical Ways to Deal with Multiple Studies and Uncertainties

Recently, meta—analysis96 has been imported from the psychometric literature
into health assessments (in particular, epidemiology) quantitatively to assess the
results from several independent studies on the same health outcome.”’  This
statistical method does so by generating meta-distributions of the quantitative
results reported in the literature. 8 Meta-analysis is a pooling device that “goes
beyond statistical analyses of single studies; it is the statistical assessment of
empirical results from independent and essentially identical sampling”.99 It has
been used to develop the empirical distribution of the estimated coefficients of
exposure-response models (ie, the estimated parameters form a very large
number of regression equations), from several independent studies, to develop a
meta-distribution of the selected values. The focus of meta-analysis is the
explicit, structured and statistical review of the literature with the expressed
intent to confirm the general thrust of the findings reported in that literature.
Meta-analytic studies are second-hand because the researcher has no control over
the data themselves. In a very real sense the researcher takes the data as he or
she finds them.

96 WG Cochran, “Problems Arising in the Analysis of a Series of Similar Experiments” (1937) 1 Journal of
the Royal Statistical Society (Supplement 4) 102; L Hedges and I Olkin, Statistical Methods for Meta-
Analysis, Academic Press (1985).

97 R Fisher, “Combining Independent Tests of Significance” (1948) 2 The American Statistician 30.

98  Peer review of heterogeneous material is assumed to be unbiased and to be able to separate the wheat
from the chaff.

99  This summarises the ideas by GV Glass, “Synthesizing Empirical Research: Meta-Analysis” in SA Ward
and LJ Reed (eds), Knowledge Structure and Use: Implication for Synthesis and Interpretation, Temple
University Press (1983) 24.
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The judicial acceptabilit&/) of meta-analysis appears established. In In re Paoli
RR Yard PCB Litigation,'® the trial court had excluded meta-analysis results
holding that those studies were not related to the plaintiff’s health. The appeal
admitted the meta-analyses as probative findings that exposure to PCBs could
result in future risk of cancer.

Another aspect of a causal chain is the propagation of the uncertainty of each
variable in that chain. Take, for instance, the casual chain that begins with the
emissions of toxic pollutants and ends with the dose to the DNA. This chain
consists of very many components that require mathematical operations to link
them. If we simplify this causal chain to the function: R = fix, y, z), each of
these variables (x, y and z) have a known distribution, say uniform, triangular
and Poisson, to represent their uncertainty. Then the question is: what is the
shape of the distribution of R, given that of the variables x, y and z?

A class of methods for developing the answer is Monte Carlo (probabilistic)
computations. They replace an integrand with a stochastic simulation based on
sums of random numbers: integration is replaced by a probabilistic simulation
which returns the unbiased expected value of the estimator and its variance.

Another class of numerical probabilistic methods (that can generally be used
without having to assume or otherwise know the shape of the distribution
function for the population) is the bootstrap resampling method. The essence of
this computational scheme is the random sample of observations, the empirical
distribution, from which a large number of bootstrap samples is obtained to
approximate large sample estimates of central tendency, dispersion and other
estimators, including ‘confidence’ limits. The approach uses empirical
distribution functions which are taken to be the simple estimate of the entire
distribution.

The bootstrap generates a relatively large number of independent samples
drawn at random with replacement, from the single original sample, to develop
an empirical cumulative distribution approximating the unknown population
distribution. A practical use of bootstrap methods is to develop confidence
intervals to represent the variability of statistical estimators such as the median,
often a difficult matter.

D. Inference

Inference can be deductive: the conclusion is not false, given that the premise
is true. If the conclusion is false when the premises are true, then the inference
is nondemonstrative. A characteristic of scientific reasoning is that it uses
hypotheses and initial conditions, from which the prediction flows. This is the
hypothetical-deductive construct where the initial conditions are taken as true at
least until observations about the prediction forces a retraction.'”  Statistical
inference is inductive because the evidence flows from the observed data to the
hypotheses.

100 916 F 2d 829 (3d Cir 1990) at 29.
101 WC Salmon, The Foundations of Scientific Inference, University of Pittsburgh Press (1966) p 18.
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The way plausibly to proceed is through induction, avoiding semantic and
syntactic vagueness (perhaps a tall order in legal reasoning) or using the methods
suggested here. The inductive apparatus is plausible if it:

e relies on coherent probabilistic reasoning or other measures of
uncertainty;

e admits retractions without logical fallacies;

e is dynamic, allowing new information to be added through Bayesian
updating or other formal rules; and

e is mechanistic (eg, biologically-motivated at the fundamental level).

Probabilistic results are not a matter of ‘true’ or ‘false’ answers. They are,
rather, an honest and accurate balancing of uncertain data and theories adduced
in a causal argument. On these notions, a legally admissible scientific result
must satisfy each of the elements of the calculus on which it is developed and
must be verifiable. Following Carnap, the probabilistic degree of confirmation
can be legal balancing,'” but not necessarily at the ‘more likely than not’ level,
as we argued in Part I. For, what is this level that can amount to an impenetrable
and often incoherent barrier for the plaintiff?

V1. CONCLUSION

Part IT has laid the heuristic foundations for reasoning with uncertain facts and
models as a means-ends framework for judicial reasoning. The framework uses
probabilistic measures and methods consistent with judicial and legislative
reasoning. Although we have used probability and statistical theory as the
means to achieve a just expression of causation, there are other, equally formal,
methods to represent uncertainty and variability.

We have heuristically demonstrated that the management of causation in toxic
tort law would greatly benefit from using the methods and principles that we
have described and exemplified. To do otherwise invites chaotic and unjust
allocations of liability.

A most recent case casts some light on the issues discussed in this paper. A
critical aspect of Kumho, just decided by the US Supreme Court, as a measure of
Daubert-reliability, is that the Court confirms for the third time in five years a
“judicial broad latitude” as a means to allow scientific gatekeeping by trial
judges.'®™ Kumho holds that Daubert applies to all contexts to which FRE 702
applies,'™ regardless of whether scientific, technical, or other specialised

102 R Carnap, The Continuum of Inductive Methods, University of Chicago Press (1952)

103 Kumho Tire Co Ltd v Carmichael [1999] US Lexis 2189 at 2195, US Supreme Court, decided 23 March
1999.

104 FRE 702 states that: “If scientific, technical, or other specialized knowledge will assist the trier of fact to
understand the evidence or to determine a fact in issue, a witness qualified as an expert by knowledge,
skill, experience, training, or education, may testify thereto in the form of an opinion or otherwise”.
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knowledge is being introduced into the controversy. The FRE 702 “latitude”
allowed to experts’ opinions is balanced by the Daubert, Joiner, and Kumho
“latitude” given to trial judges to admit that evidence.

As discussed in Part I, Daubert stands for the admissibility of scientific,
knowledge requiring expert testimon&, under FRE 702, through four factors.'®

The critical term is “knowledge”,' not the adjectives modifying it.'” Those
four factors “may be” required to establish the reliability of expert knowledge.
These are not the sole factors: the context of the case determines the appropriate
number of factors to be set up by the trial judge.'® This reflects the inherent
“flexibility” of the wording of FRE 702.'%”

The argument used by the US Supreme Court to ascertain whether or not
expert evidence is admissible at trial is that:

® it is not the “reasonableness” of the expert’s use of a specific form of
inference to determine the causation that is unreliable; but rather

® it is the “reasonableness” of a specific form of inference and the
expert’s methods for analysis and deriving conclusion about the cause
of failure (of tyre damage leading to a car crash that killed one person
and injured three more) that is unreliable.'"°

In other words, if there are relevant but unaccounted initiating and causal
events, and the causal analysis is purely judgmental, then the expert’s testimony
can be insufficient to pass through the I’udicial gates. The process is inductive,
or more precisely, empirico-inductive.'!

Kumho correctly extends Daubert beyond scientific knowledge and requires
trial judges to establish a flexible protocol capable of filtering out dubious
evidence. Reliable and admissible expert evidence must be cleared according to
a coherent frame of reference for the parties and the judge. The “leeway”
allowed by Kumho is precisely matched by the analytical aspects developed in
Parts I and II of this work. The Kumho Court appears to believe that the Federal
Rules of Evidence both expedite trials, and seek the “truth” and the “Just
determination” of the judicial process.'”> The trilogy of Daubert, Joinder and
Kumho still provides no operational or coherent framework for balancing the

105  Daubert v Merrell Dow Pharmaceuticals Inc 509 US 579 (1993) at 592-4. The factors are whether (a) a
“theory or techniques ... can be (and has been) tested”; (b) its “peer review and publication”; (c) its
“known or potential rate of error” and whether there are “standards controlling the technique’s
operation”; and (d) its “general acceptance in the relevant scientific community”. The factors “may bear
on the judge’s gatekeeping determination” and are not exhaustive: Kumho, note 103 supra at 2194.

106 Kumho, note 103 supra at 2193, citing Daubert. Daubert dealt with scientific knowledge, not with the
other forms of evidence listed in the FRE 702.

107  Ibid, citing Daubert, note 105 supra at 589-90.

108 Ibid at 2195.

109 Ibid.

110 1bid.

111 Ibid at 2193, citing Learned Hand’s view that experts’ “general truths are derived from ... specialized
knowledge” (citation omitted).

112 Ibid at 2195, referring to FRE 102.
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latitudes give to experts and to trial judges. We are now even more convinced
than ever that our suggestions are worth further development.





